正文 计算机网络 拾年之璐 V管理员 /2022年 /422 阅读 0706 ## OSI 和 TCP/IP ### OSI  **OSI 的七层体系结构概念清楚,理论也很完整,但是它比较复杂而且不实用,而且有些功能在多个层中重复出现。** ### TCP/IP 1. 应用层 **应用层位于传输层之上,主要提供两个终端设备上的应用程序之间信息交换的服务,它定义了信息交换的格式,消息会交给下一层传输层来传输。** 2. 传输层 **传输层的主要任务就是负责向两台终端设备进程之间的通信提供通用的数据传输服务。** 应用进程利用该服务传送应用层报文。 **运输层主要使用以下两种协议:** 1. **传输控制协议 TCP**(Transmisson Control Protocol)--提供**面向连接**的,**可靠的**数据传输服务。 2. **用户数据协议 UDP**(User Datagram Protocol)--提供**无连接**的,尽最大努力的数据传输服务(**不保证数据传输的可靠性**)。 3. 网络层 **网络层负责为分组交换网上的不同主机提供通信服务。** 在发送数据时,网络层把运输层产生的报文段或用户数据报封装成分组和包进行传送。 **网络层的还有一个任务就是选择合适的路由,使源主机运输层所传下来的分株,能通过网络层中的路由器找到目的主机。** 4. 网络接口层 - 数据链路层(data link layer)通常简称为链路层( 两台主机之间的数据传输,总是在一段一段的链路上传送的)。**数据链路层的作用是将网络层交下来的 IP 数据报组装成帧,在两个相邻节点间的链路上传送帧。每一帧包括数据和必要的控制信息(如同步信息,地址信息,差错控制等)。** - **物理层的作用是实现相邻计算机节点之间比特流的透明传送,尽可能屏蔽掉具体传输介质和物理设备的差异** ### 为什么网络要分层? 1. **各层之间相互独立**:各层之间相互独立,各层之间不需要关心其他层是如何实现的,只需要知道自己如何调用下层提供好的功能就可以了(可以简单理解为接口调用)**。这个和我们对开发时系统进行分层是一个道理。** 2. **提高了整体灵活性** :每一层都可以使用最适合的技术来实现,你只需要保证你提供的功能以及暴露的接口的规则没有改变就行了。**这个和我们平时开发系统的时候要求的高内聚、低耦合的原则也是可以对应上的。** 3. **大问题化小** : 分层可以将复杂的网络间题分解为许多比较小的、界线比较清晰简单的小问题来处理和解决。这样使得复杂的计算机网络系统变得易于设计,实现和标准化。 **这个和我们平时开发的时候,一般会将系统功能分解,然后将复杂的问题分解为容易理解的更小的问题是相对应的,这些较小的问题具有更好的边界(目标和接口)定义。** ## HTTP vs HTTPS ### HTTP 全称超文本传输协议,就是用来规范超文本的传输 HTTP 是一个无状态(stateless)协议,也就是说服务器不维护任何有关客户端过去所发请求的消息。这其实是一种懒政,有状态协议会更加复杂,需要维护状态(历史信息),而且如果客户或服务器失效,会产生状态的不一致,解决这种不一致的代价更高。 ### HTTP 协议通信过程 1. 服务器在 80 端口等待客户的请求。 2. 浏览器发起到服务器的 TCP 连接(创建套接字 Socket)。 3. 服务器接收来自浏览器的 TCP 连接。 4. 浏览器(HTTP 客户端)与 Web 服务器(HTTP 服务器)交换 HTTP 消息。 5. 关闭 TCP 连接。 ### HTTPS 是 HTTP 的加强安全版本。HTTPS 是基于 HTTP 的,也是用 TCP 作为底层协议,并额外使用 SSL/TLS 协议用作加密和安全认证。默认端口号是 443. ### SSL/TLS SSL/TLS 的核心要素是**非对称加密**。非对称加密采用两个密钥——一个公钥,一个私钥。在通信时,私钥仅由解密者保存,公钥由任何一个想与解密者通信的发送者(加密者)所知。 #### 对称加密 使用 SSL/TLS 进行通信的双方需要使用非对称加密方案来通信,但是非对称加密设计了较为复杂的数学算法,在实际通信过程中,计算的代价较高,效率太低,因此,SSL/TLS 实际**对消息的加密**使用的是对称加密。 ## HTTP 1.0 vs HTTP 1.1 **HTTP/1.0 默认使用短连接**,每遇到这样一个 Web 资源,浏览器就会重新建立一个TCP连接,这样就会导致有大量的“握手报文”和“挥手报文”占用了带宽。 **为了解决 HTTP/1.0 存在的资源浪费的问题, HTTP/1.1 优化为默认长连接模式 。** ## 三握四挥 ### 三次握手  **三次握手的目的是建立可靠的通信信道,说到通讯,简单来说就是数据的发送与接收,而三次握手最主要的目的就是双方确认自己与对方的发送与接收是正常的。** > 第一次握手:Client 什么都不能确认;Server 确认了对方发送正常,自己接收正常 > > 第二次握手:Client 确认了:自己发送、接收正常,对方发送、接收正常;Server 确认了:对方发送正常,自己接收正常 > > 第三次握手:Client 确认了:自己发送、接收正常,对方发送、接收正常;Server 确认了:自己发送、接收正常,对方发送、接收正常 > > 所以三次握手就能确认双方收发功能都正常,缺一不可。 ### 四次挥手 > 客户端-发送一个 FIN,用来关闭客户端到服务器的数据传送 > > 服务器-收到这个 FIN,它发回一 个 ACK,确认序号为收到的序号加 1 。和 SYN 一样,一个 FIN 将占用一个序号 > > 服务器-关闭与客户端的连接,发送一个 FIN 给客户端 > > 客户端-发回 ACK 报文确认,并将确认序号设置为收到序号加 1 任何一方都可以在数据传送结束后发出连接释放的通知,待对方确认后进入半关闭状态。当另一方也没有数据再发送的时候,则发出连接释放通知,对方确认后就完全关闭了 TCP 连接。 ## TCP 协议如何保证可靠传输 1. 应用数据被分割成 TCP 认为最适合发送的数据块。 2. TCP 给发送的每一个包进行编号,接收方对数据包进行排序,把有序数据传送给应用层。 3. **校验和:** TCP 将保持它首部和数据的检验和。这是一个端到端的检验和,目的是检测数据在传输过程中的任何变化。如果收到段的检验和有差错,TCP 将丢弃这个报文段和不确认收到此报文段。 4. TCP 的接收端会丢弃重复的数据。 5. **流量控制:** TCP 连接的每一方都有固定大小的缓冲空间,TCP 的接收端只允许发送端发送接收端缓冲区能接纳的数据。当接收方来不及处理发送方的数据,能提示发送方降低发送的速率,防止包丢失。TCP 使用的流量控制协议是可变大小的滑动窗口协议。 (TCP 利用滑动窗口实现流量控制) 6. **拥塞控制:** 当网络拥塞时,减少数据的发送。 7. **ARQ 协议:** 也是为了实现可靠传输的,它的基本原理就是每发完一个分组就停止发送,等待对方确认。在收到确认后再发下一个分组。 8. **超时重传:** 当 TCP 发出一个段后,它启动一个定时器,等待目的端确认收到这个报文段。如果不能及时收到一个确认,将重发这个报文段 ## ARQ 协议 **自动重传请求**(Automatic Repeat-reQuest,ARQ)是 OSI 模型中数据链路层和传输层的错误纠正协议之一。它通过使用确认和超时这两个机制,在不可靠服务的基础上实现可靠的信息传输。如果发送方在发送后一段时间之内没有收到确认帧,它通常会重新发送。ARQ 包括停止等待 ARQ 协议和连续 ARQ 协议。 ### 停止等待 ARQ 协议 每发完一个分组就停止发送,等待对方确认 , 如果过了一段时间(超时时间后),还是没有收到 ACK 确认,说明没有发送成功,需要重新发送,直到收到确认后再发下一个分组。 - **优点:** 简单 - **缺点:** 信道利用率低,等待时间长 ### 连续 ARQ 协议 连续 ARQ 协议可提高信道利用率。发送方维持一个发送窗口,凡位于发送窗口内的分组可以连续发送出去,而不需要等待对方确认。接收方一般采用累积确认,对按序到达的最后一个分组发送确认,表明到这个分组为止的所有分组都已经正确收到了。 - **优点:** 信道利用率高,容易实现,即使确认丢失,也不必重传。 - **缺点:** 不能向发送方反映出接收方已经正确收到的所有分组的信息。 比如:发送方发送了 5 条 消息,中间第三条丢失(3 号),这时接收方只能对前两个发送确认。发送方无法知道后三个分组的下落,而只好把后三个全部重传一次。这也叫 Go-Back-N(回退 N),表示需要退回来重传已经发送过的 N 个消息 ### 滑动窗口和流量控制 **TCP 利用滑动窗口实现流量控制。流量控制是为了控制发送方发送速率,保证接收方来得及接收。** 接收方发送的确认报文中的窗口字段可以用来控制发送方窗口大小,从而影响发送方的发送速率。将窗口字段设置为 0,则发送方不能发送数据。 ### 拥塞控制 拥塞控制就是为了防止过多的数据注入到网络中,这样就可以使网络中的路由器或链路不致过载。拥塞控制所要做的都有一个前提,就是网络能够承受现有的网络负荷。 TCP 的拥塞控制采用了四种算法,即 **慢开始** 、 **拥塞避免** 、**快重传** 和 **快恢复**。在网络层也可以使路由器采用适当的分组丢弃策略(如主动队列管理 AQM),以减少网络拥塞的发生。 - **慢开始:** 慢开始算法的思路是当主机开始发送数据时,如果立即把大量数据字节注入到网络,那么可能会引起网络阻塞,因为现在还不知道网络的符合情况。经验表明,较好的方法是先探测一下,即由小到大逐渐增大发送窗口,也就是由小到大逐渐增大拥塞窗口数值。cwnd 初始值为 1,每经过一个传播轮次,cwnd 加倍。 - **拥塞避免:** 拥塞避免算法的思路是让拥塞窗口 cwnd 缓慢增大,即每经过一个往返时间 RTT 就把发送放的 cwnd 加 1. - **快重传与快恢复:** 在 TCP/IP 中,快速重传和恢复(fast retransmit and recovery,FRR)是一种拥塞控制算法,它能快速恢复丢失的数据包。没有 FRR,如果数据包丢失了,TCP 将会使用定时器来要求传输暂停。在暂停的这段时间内,没有新的或复制的数据包被发送。有了 FRR,如果接收机接收到一个不按顺序的数据段,它会立即给发送机发送一个重复确认。如果发送机接收到三个重复确认,它会假定确认件指出的数据段丢失了,并立即重传这些丢失的数据段。有了 FRR,就不会因为重传时要求的暂停被耽误。 当有单独的数据包丢失时,快速重传和恢复(FRR)能最有效地工作。当有多个数据信息包在某一段很短的时间内丢失时,它则不能很有效地工作。 ## 从输入URL到页面加载发生了什么  1. DNS 解析 DNS解析的过程就是寻找哪台机器上有你需要资源的过程 2. TCP 连接 3. 发送 HTTP 请求 4. 服务器处理请求并返回 HTTP 报文 5. 浏览器解析渲染页面 6. 连接结束 ## HTTP 是不保存状态的协议, 如何保存用户状态? Session 机制的存在就是为了解决这个问题,Session 的主要作用就是通过服务端记录用户的状态。典型的场景是购物车,当你要添加商品到购物车的时候,系统不知道是哪个用户操作的,因为 HTTP 协议是无状态的。服务端给特定的用户创建特定的 Session 之后就可以标识这个用户并且跟踪这个用户了(一般情况下,服务器会在一定时间内保存这个 Session,过了时间限制,就会销毁这个 Session)。 ## Cookie 的作用是什么? 和 Session 有什么区别? **Cookie 一般用来保存用户信息** 比如 ① 我们在 Cookie 中保存已经登录过的用户信息,下次访问网站的时候页面可以自动帮你把登录的一些基本信息给填了;② 一般的网站都会有保持登录,也就是说下次你再访问网站的时候就不需要重新登录了,这是因为用户登录的时候我们可以存放了一个 Token 在 Cookie 中,下次登录的时候只需要根据 Token 值来查找用户 **Session 的主要作用就是通过服务端记录用户的状态**即可 ## HTTP状态码 200:成功响应 403:客户端发送的url正确,但是服务端由于某些原因拒绝响应 404:客户端请求的资源不存在 400:其他4开头的状态码不适用时使用400,往往是服务器不理解客户端的请求 500:这是一个通用的服务器错误响应。对于大多数web框架,如果在执行请求处理代码时遇到了异常,它们就发送此响应代码。 505: 当服务器不支持客户端试图使用的HTTP版本时发送此响应代码。 本文采用创作共用版权 CC BY-NC-SA 3.0 CN 许可协议,转载或复制请注明出处! -- 展开阅读全文 --